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Short Papers

On the Evaluation of the Double Surface
Integrals Arising in the Application of the

Boundary Integral Method to 3-D Problems

Paolo Arcioni, Marco Bressan, and Luca Perregrini

Abstract—In this paper, the authors discuss how to minimize the
computing time for the evaluation of the double surface integrals arising
in the application of the boundary integral method (BIM) to three-
dimensional (3-D) problems. The integrals considered refer to the Green’s
functions for the scalar and vector potentials and to uniform or linear
basis and test functions defined over triangular sub-domains. The authors
report original analytical formulas for the double surface integrals over
coincident triangles involving the singular terms of the Green’s func-
tions and present a criterion for obtaining a good compromise between
accuracy and computing time in numerical integration.

Index Terms—Boundary integral method, potential integrals, numerical
integration.

I. INTRODUCTION

In the application of the boundary integral method (BIM) to the
determination of three-dimensional (3-D) fields in the presence of
perfectly conducting bodies, the electromagnetic problem is usually
formulated in terms of an electric field integral equation, where the
electric field is related to the unknown surface current by the Green’s
functions for the scalar and vector potentials. Triangular patches
in conjunction with the vector basis functions proposed in [1] are
commonly used to represent the surface of the bodies and the current
distributed thereat. Since many patches are needed when complicated
or large structures are to be analyzed, the order of the system matrices
deriving from the discretization of the integral equation may be rather
large. Moreover, these matrices are dense and their calculation re-
quires the field evaluation in the source region where the kernel of the
integral equation diverges. Hence, the time required for the matrice’s
computation is a substantial part of the total computing time, and its
minimization is essential to improve the numerical efficiency.

Many authors applied the BIM to scattering problems, usually with
the aim of finding some global parameter, such as the radar cross-
section of 3-D objects [1]–[4]. Actually, in these cases quite accurate
results can be obtained even with a coarse representation of the field
on the surface and/or with a rough estimate of the double surface
integrals required for the calculation of the matrices [5]. For this
reason, a well-established method to minimize the computing time
consists in a first accurate integration, followed by a second, more
coarse one, performed by sampling the integrand at a single point.

Recently, the authors used the BIM to calculate the resonant
frequencies and the modal fields of cavity resonators [6]. The authors
found that in this case the above-mentioned method to evaluate the
integrals may lead to quite inaccurate results. In fact, if a good
precision (e.g., 0.1%) is required for the resonant frequencies, the
matrices calculation must be performed quite carefully (e.g., with an
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accuracy better than 1%). This paper describes the integration strategy
the authors followed to obtain an accurate and fast evaluation of the
BIM integrals. The authors report some original analytical formulas
for the double surface integrals over coincident triangles involving
the singular terms of the Green’s functions and discuss the numerical
integration scheme. Throughout the paper, reference is made to two
different Green’s functions, i.e., the quasi-static Green’s function for
a spherical resonator defined in the Coulomb gauge [7] used in [6],
and the free-space Green’s function in the Lorentz gauge, widely
used in the BIM applications.

II. EVALUATION OF THE INTEGRALS

Using the Galerkin’s method and the basis functions defined in [1],
the integrals required for the evaluation of the matrices have the form
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where T and T 0 are generic triangular patches,g and
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Green’s functions for the scalar and the vector potentials,k is the
wavenumber,~r and~r 0 denote the field and source points onT andT 0;
~�� = ~��(~r) and~� 0� = ~� 0�(~r

0) denote the position vectors of the field
and source points with respect to the vertices� and� of the triangles
T and T 0 (see Fig. 1). It is well-known that the Green’s functions
for the potentials exhibit integrable singularities when the distance
R = j~Rj = j~r� ~r 0j between the source and the field point vanishes.
For this reason, different approaches must be followed according to
the following:

• whetherT andT 0 coincide: the integrands in (1) and (2) diverge
throughout the whole triangle, and analytical integration of the
singular terms is mandatory;

• whether T and T 0 are joined by an edge or a vertex: the
integrands are unbound, a fully numerical integration may fail
if a high accuracy is required, and analytical integration of the
singular terms is advisable;

• whether T and T 0 are disjoint triangles: the integrands are
bound and smooth, and a Gaussian numerical integration is ad-
equate, the only requirement being a good compromise between
accuracy and computation time.

A. Analytical Integration

In the case of coincident or joint triangles the singular parts of
the Green’s functions in (1) and (2) are extracted and integrated
separately. The integrals to be considered are
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TABLE I
ANALYTICAL EXPRESSIONS OFINTEGRALS I1, I2, AND I3 FOR COINCIDENT TRIANGLES: a, b, AND c DENOTE THE LENGTH OF THE EDGES OF THE

TRIANGLE; A AND p DENOTE ITS AREA AND HALF-PERIMETER. THE EDGE LABELING IS DIFFERENT FOR THETWO CASES� = � AND � 6= �

Fig. 1. Geometrical quantities associated to the trianglesT andT 0: h� is
the height ofT 0 with respect to the vertex�.

where
$

I is the unit dyadic. IntegralI1 derives from (1), whereasI2
and I3 derive from (2), considering the free-space Green’s function
and the quasi-static spherical resonator Green’s function, respectively.
The singular terms in (4) and (5) are different due to the different
gauge used in defining the vector potential Green’s functions [7], [8].

FunctionsI4 and~I5 indicated in (3) and (4) are usually referred to
as “potential integrals” and their analytical expressions are reported
in [9]–[12]. The authors obtained the analytical expression for~I6 in

(5) substituting the dyadic identity~R~RR�3 =
$

I R�1 +r0(~RR�1)

and applying the Gauss theorem. The authors found
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The quantities~R+, ~R�, h� ,~t� are defined in Fig. 1.
FunctionsI4, ~I5, and~I6 are bound and can be integrated numeri-

cally onT to yield I1, I2, andI3. Actually, the authors followed this
analytical-numerical integration scheme only for joint triangles since
in the case of coincident triangles the authors were able to derive
the analytical formulas forI1, I2, andI3 that turned out to be even
simpler than the expressions for the potential integrals. Considering
two generic coplanar trianglesT andT 0, vectors~R, ~��, and~� 0� lie

on the same plane of the triangles, and the following identities hold:
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where rs and r0s are the surface operators—defined over the
plane—acting on the unprimed and primed coordinates, respectively.
Using these identities and applying the Gauss’ and the Stokes’
theorems, the double-surface integrals (3)–(5) are transformed into
double-line integrals over the boundariesC, C 0 of T , T 0. The authors
found:
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where~u (~u 0) is the outward normal toC (C 0) at~r (~r 0). In the case of
coincident triangles the authors could perform the integrals (11)–(13)
analytically. After some cumbersome manipulations (not reported
here for reasons of space) the authors obtained the expressions
reported in Table I (two different formulas are given forI2 and I3,
according to whether the vertices� and � coincide or not). Note
that the expressions in Table I are simple relations involving only the
length of the edges, the perimeter, and the area of the triangle.

Incidentally, the authors note that (11)–(13) can be used to evaluate
numericallyI1, I2, and I3 over coplanar domains of generic shape
since in their derivation the triangular shape is immaterial and the
integrands are regular functions.
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Fig. 2. Maximum relative error� in evaluating (1) by the Gaussian rule
Gm;n versus the numberm� n of the evaluations of the integrand.

B. Numerical Integration

In performing the numerical integrations the authors used the
routine D01PAF of the NAG library [13], which is specialized for
triangular domains and implements then-point (n = 1, 4, 10, 20,
35, � � �) Gaussian quadrature rule, indicated byGn in the following.

In the case of disjoint triangles, the numerical evaluation of (1),
(2) is performed by the Gaussian ruleGm;n, resulting from the use
of Gm on T andGn on T 0. The overall precision depends onm and
n, whereas the computing time is proportional to the total number of
function evaluations, i.e., tom � n.

To derive the criterion for the best choice ofm and n, the
authors compared the values of integrals (1) and (2) obtained using
different rulesGm;n with the values obtained by an accurate adaptive
integration. The relative errors were calculated considering a large
number of pairs of triangles belonging to fairly regular meshes
approximating different surface shapes. In all cases, the mesh size did
not exceed a quarter wavelength to adequately represent the current
density with the basis functions the authors used [5]. The main results
found are:

• the maximum relative errorpertaining to the ruleGm;n in the
evaluation of integrals (1) and (2) is practically independent
of the frequency, of the Green’s function, of the shape of the
surface, and of the mesh size;

• the best compromise between accuracy and computing time is
achieved whenm = n (balanced rules), as evidenced in Fig. 2
for the case of integrals (1).

The first, not obvious, result can be explained considering that
the maximum relative error occurs for the integrals involving the
closest disjoint triangles since in this case the integrand is maximally
uneven. On the other hand, for close triangles the largest contribution
derives from the diverging terms of the Green’s functions which are
independent of either the frequency or the boundary conditions they
satisfy. Moreover, the accuracy in evaluating these last contributions
depends essentially on the ratio between the dimensions of the
triangles and their distance. Therefore, a modification of the mesh
size, which causes a local scaling of the geometry, keeps this ratio
unchanged and does not affect the maximum relative error. For these
reasons, the data reported in Fig. 2 have a general validity and they
can be used to choose the rule that assures a given precision with the
minimum number of function evaluations. Other results relative to
integrals (2) (not reported here for brevity) show a similar behavior
with the only difference being errors about twice as large.

The use of the ruleGm;n in the integration of the regular part of
the Green’s functions over coincident or joint triangles gives rise to
relative errors that in general are much smaller than those reported
in Fig. 2. The authors note, however, that some problems may derive
from a possible residual unevenness of the integrand for coincident

triangles. For example, the finite part of the scalar free-space Green’s
function, i.e.,(e�jkR � 1)=4�R, exhibits a tip forR = 0. Thus,
the rules the authors considered which require the sampling of the
function exactly at the tip may not be so accurate. In these cases, a
better result could be obtained following the approach proposed in
[14], or considering different Gaussian rules, e.g., those reported in
[12].

Finally, in the case of joint triangles taken from the same regular
meshes, the authors found that the maximum relative error in evalu-
ating I1 was about 20%, 4%, 1%, 0.5%, and 0.3%, when integrating
I4 by the G1, G4, G10, G20, and G35 rule, respectively. When
calculatingI2 and I3 by the same rules errors about twice as large
were found.

III. CONCLUSION

The analytical formulas the authors derived and the integration
scheme discussed, together with the numerical data reported, can
be used to improve the accuracy and reduce the computing time
in the evaluation of the double surface integrals arising in the
application of the BIM to 3-D problems in conjunction with the basis
functions defined in [1]. In the specific application of the BIM to the
determination of the resonant frequencies of cavity resonators [6],
the authors found that by using the analytical formulas together with
the ruleG4; 4 for the double numerical integrals and the ruleG20

for integrating the potential integrals on joint triangles, the system
matrices are evaluated in fairly short computing times to an accuracy
better than 1%. This, in turn, permits an overall precision of the order
of 0.1% in the resonant frequencies [6] to be obtained.
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Precise Computations of Resonant Frequencies
and Quality Factors for Dielectric

Resonators in MIC’s with Tuning Elements

Jenn-Ming Guan and Ching-Chuan Su

Abstract—In this paper, the highly accurate results of resonant fre-
quencies, field distributions, and quality factors of the TE01� mode for
the cylindrical shielded dielectric resonator (DR) in monolithic integrated
circuits (MIC’s) with the practical tuning element, such as the metallic
tuning screw and the dielectric tuning device are presented. By using
the newly developed FD-SIC method, numerical results can be calculated
accurately and efficiently. The DR structures with tuning elements can
be more easily modeled by the present approach than the other meth-
ods using approximate solutions or the mode-matching (MM) methods.
Numerical results in the literature are compared to the present FD-SIC
results for the DR without tuning elements and detailed discussions on
these results are given. In addition, design curves are also presented for
the DR with the metallic tuning screw and with the dielectric tuning
device. These design curves are helpful for designing DR systems with
tuning elements in MIC applications.

I. INTRODUCTION

Dielectric resonators (DR’s) have now become basic components
for designing filters and oscillators of high quality factors in many mi-
crowave systems. The nature of low-loss and ease of miniaturization
into microwave integrated circuits (MIC’s) or monolithic microwave
integrated circuits (MMIC’s) make them very attractive. The state-
of-the-art local oscillator design in MIC’s often employs DR’s to
build high-performance DR oscillators. Mechanical tuning elements
commonly accompany the DR to change the resonant frequency to
compensate for some deviations due to the fabrication tolerance and
for some errors due to the theoretical prediction. The typical tuning
elements are the metallic tuning plate or screw (Fig. 2) and the
dielectric tuning device (Fig. 3). The metallic tuning plate or screw
increases the resonant frequency when moved near to the DR, while
the dielectric tuning device or another DR is used to decrease the
resonant frequency for wide-band usage [1].

Resonant frequencies and field distributions for the DR on the
microstrip substrate or in a cavity have been investigated with
many numerical methods, such as the effective dielectric constant
(EDC) method [2], the mode-matching (MM) methods [3]-[6], the
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Fig. 1. Configuration of a DR in a MIC environment.

generalized impedance boundary conditions (GIBC’s) method [7],
the finite-element methods (FEM’s) [8], and the frequency-domain
finite-difference method [9]. Among them, the simple EDC method
[2] is not rigorous and the field distributions obtained are not accurate
enough in general, while the rigorous GIBC method [7] is tedious and
the results of it are even incorrect in some cases. Numerical results of
these two methods will be demonstrated in Section III. Computations
of the unloaded quality factorQu are usually then performed by the
perturbational method via the calculated resonant frequency and field
distributions which are obtained from lossless conditions. Literature
with this approach includes the EDC method [2] and the one-
dimensional (1-D) FEM [10]. On the other hand, quality factors are
obtained directly by searching the complex resonant frequencies for
the lossy resonators in the MM methods [4]–[6] or by the incremental
frequency rule [6]. However, only the basic structure depicted in
Fig. 1 is considered in the above-mentioned investigations.

Rigorous calculations for the DR with the metallic tuning screw
or the dielectric tuning device are very limited. To the authors’
knowledge, only two references can be found: the FEM [8] for only
the resonant frequency of the DR with metallic screws and the more
complete investigation in [5] by the MM method. The EDC, GIBC,
and 1-D FEM methods are not suitable for these two structures. To
obtain the precise values of the resonant frequency andQu factors
of these practical DR systems, efficient and versatile approaches
are preferred and needed, especially for theQu computation with
the perturbational method in which the calculated resonant field
distributions should be as correct as possible. In this paper, the finite-
difference and simultaneous iteration with the Chebyshev acceleration
(FD-SIC) method [9] is extended to model the DR with tuning devices
more flexibly. Due to the efficiency of this method, a large number of
node points can be used and adequately distributed over the modeling
cross sections to calculate the required results precisely.

II. FORMULATION

The DR placed on the microstrip substrate is shielded by the
metallic enclosure, where the side walls are far away from the DR,
as indicated in Fig. 1. In actual calculations, the metallic side wall
at a large radius is about eight times the radius of the DR. Only the
TE01� mode is considered for its most common usage in microstrip
systems. These DR systems are first assumed to be lossless to
obtain the resonant frequencies and eigenfield distributions by using
the FD-SIC method [9]. Then, the quality factors are evaluated by
the conventional perturbational method in which the surface current
densities on the conductor surfaces are related to the magnetic fields
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