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Short Papers

On the Evaluation of the Double Surface accuracy better than 1%). This paper describes the integration strategy

Integrals Arising in the Application of the the authors followed to obtain an accurate and fast evaluation of the
Boundary Integral Method to 3-D Problems BIM integrals. The authors report some original analytical formulas
for the double surface integrals over coincident triangles involving

Paolo Arcioni, Marco Bressan, and Luca Perregrini the singular terms of the Green’s functions and discuss the numerical

integration scheme. Throughout the paper, reference is made to two
different Green’s functions, i.e., the quasi-static Green'’s function for
Abstract—In this paper, the authors discuss how to minimize the g spherical resonator defined in the Coulomb gauge [7] used in [6],

computing time for the evaluation of the double surface integrals arising _ ) : ; :
in the application of the boundary integral method (BIM) to three- and the free-space Green's function in the Lorentz gauge, widely

dimensional (3-D) problems. The integrals considered refer to the Green's US€d in the BIM applications.

functions for the scalar and vector potentials and to uniform or linear

basis and test functions defined over triangular sub-domains. The authors Il. EVALUATION OF THE INTEGRALS

report original analytical formulas for the double surface integrals over Using the Galerkin’s method and the basis functions defined in [1],

coincident triangles involving the singular terms of the Green's func-  ne integrals required for the evaluation of the matrices have the form
tions and present a criterion for obtaining a good compromise between

accuracy and computing time in numerical integration. / / o7 7' k) dS' dS B
Index Terms—Boundary integral method, potential integrals, numerical rJr

integration. / / fo- G(F 7', k) §l3dS" dS (2
R

I. INTRODUCTION whereT and T’ are generic triangular patcheg,and G are the

In the application of the boundary integral method (BIM) to théreen’s functions for the scalar and the vector potentials the
determination of three-dimensional (3-D) fields in the presence Wvenumberiand*’ denote the field and source pointsBrandT”;
perfectly conducting bodies, the electromagnetic problem is usuafly = 7« () andi’; = 77(7"") denote the position vectors of the field
formulated in terms of an electric field integral equation, where tifd Source points with respect to the vertioesndj of the triangles
electric field is related to the unknown surface current by the Greerfs@nd T" (see Fig. 1). It is well-known that the Green's functions
functions for the scalar and vector potentials. Triangular patch the potentials exhibit integrable singularities when the distance

1B — |7 i i ;
in conjunction with the vector basis functions proposed in [1] arg — || = |7~ | between the source and the field point vanishes.

commonly used to represent the surface of the bodies and the cur Nt this reason, different approaches must be followed according to

distributed thereat. Since many patches are needed when compliczE\teedfouowmg:

or large structures are to be analyzed, the order of the system matrices WhetherZ" and” coincide: the integrands in (1) and (2) diverge
deriving from the discretization of the integral equation may be rather  throughout the whole triangle, and analytical integration of the
large. Moreover, these matrices are dense and their calculation re- Singular terms is Imanda_tt(_)ry;

quires the field evaluation in the source region where the kernel of the' Whether T and T" are joined by an edge or a vertex: the
integral equation diverges. Hence, the time required for the matrice’s intégrands are unbound, a fully numerical integration may fail
computation is a substantial part of the total computing time, and its If & high accuracy is required, and analytical integration of the
minimization is essential to improve the numerical efficiency. singular terms is advisable; .

Many authors applied the BIM to scattering problems, usually with * Whether 7' and T are disjoint triangles: the integrands are
the aim of finding some global parameter, such as the radar cross- Pound and smooth, and a Gaussian numerical integration is ad-
section of 3-D objects [1]-[4]. Actually, in these cases quite accurate €duate, the only requirement being a good compromise between
results can be obtained even with a coarse representation of the field &ccuracy and computation time.
on the surface and/or with a rough estimate of the double surfaRe
integrals required for the calculation of the matrices [5]. For this o o . )
reason, a well-established method to minimize the computing time!™ e case of coincident or joint triangles the singular parts of
consists in a first accurate integration, followed by a second, mdf¢ Green’s functions in (1) and (2) are extracted and integrated
coarse one, performed by sampling the integrand at a single pointeParately. The integrals to be considered are

Recently, the authors used the BIM to calculate the resonant I, = / U ids’} 1S 3)
frequencies and the modal fields of cavity resonators [6]. The authors r L7
found that in this case the above-mentioned method to evaluate the
integrals may lead to quite inaccurate results. In fact, if a good

Analytical Integration

14(7)

3 3 =/
precision (e.g., 0.1%) is required for the resonant frequencies, the L = / P - [/ Ps dS’} s (4)
matrices calculation must be performed quite carefully (e.g., with an T R
Is(7)
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TABLE |
ANALYTICAL EXPRESSIONS OAINTEGRALS [, I2, AND I3 FOR COINCIDENT TRIANGLES: a, b, AND ¢ DENOTE THE LENGTH OF THE EDGES OF THE
TRIANGLE; A AND p DENOTE ITS AREA AND HALF-PERIMETER THE EDGE LABELING IS DIFFERENT FOR THETWO CASES v = 3 AND «v # 3

IL=—44% (LIn(1 - £) + 1 In(1 - &)+ LIn(1 - £))

Case o = f3: a 1s the length of the edge opposite to vertex o
C2

L=4 [(10+3 o —3"2;“) a— (5~3“2;"2 —2b2';2)b— (5+302b‘;‘2 +2—"2;;2) c

+ (a® - 30% - 3¢* — 8—2—;) Zin(1- £) + (a2 — 25% — 4 + 6'—:;) tin(1-4)+ (a2 — 47 — 262 +6§;) Ln(1 - 5)]

I = [6 (4+ ee® “2;"’) a— (11 — izt 4 b’—C’) b (11 6t ”2—C’> c

P

15 a2 a?
+ (a2 — 3 -3 +4j—f) Zin(1-2)+ (a2 — 2% —4c® + 12:—2’) Fln(1-2)+ (a2 —4b? — 22 + 12;‘—5) Lin(1 - %)]
Case a # f3: a is the length of the edge between vertices o and 8
L=4 [(—10+ oa? _ “Zc;bz) a+ (5 N L sia-crz) b+ (5 - et +6"’a-;2) ¢
+ (20.2 -8 = +4§;) Zln(1 - %)+ (90.2 -3 - +4%§) Zln(1-2)+ (9(12 —b -3¢ +4f—22) 2In(1 ~ §)]

L =4 [(_2 —3l=et 3—7“2;"2) a+3 (1 . 4——5—"’;62) b+3 (1 ety 4——%;62) c

¥ (2a2 By 83;) Rip(1-2)4 (9a2 —3? - — 12%}) 2In(1 - &) + (9,12 P 3& - 125;) 21n(1 — g)]

on the same plane of the triangles, and the following identities hold:

R™'=-V..V.R )
IR =V.xV.,x IR-V.V.R @8)
RRR®=V.xV,x IR )

foot (V.VLR) -l = V. V. Rlguilh

—%, N 2-»“_"-»//_2 2
vertex o TIRT— R R + 3 (faR—Rp)— 5 IR’]} (10)

Fig. 1. Geometrical quantities associated to the trianglesnd I"': h is

7 ’ N
the height of T’ with respect to the vertex. where V, and V', are the surface operators—defined over the

plane—acting on the unprimed and primed coordinates, respectively.
Using these identities and applying the Gauss’' and the Stokes’
_ theorems, the double-surface integrals (3)-(5) are transformed into
where I is the unit dyadic. Integral; derives from (1), whereak double-line integrals over the boundar@sC’ of T, T'. The authors
and I derive from (2), considering the free-space Green’s functidRund:
and the quasi-static spherical resonator Green’s function, respectively.

The singular terms in (4) and (5) are different due to the different I :_/ / Ra-@'didl (12)
gauge used in defining the vector potential Green’s functions [7], [8]. ¢ Jo!
Functionsl, andl; indicated in (3) and (4) are usually referred to I = _/ / R - [Fufly — Flfa + % 7. I
as “potential integrals” and their analytical expressions are reported ¢ Jor
in [9]1-[12]. The authors obtained the analytigal expression/foin — %E*'j + T(ﬁu pls— %RQ)] i didr (12)
(5) substituting the dyadic identitf R > = I R~ + V/(ER™) g [ pa s Ta
and applying the Gauss theorem. The authors found =t o /c, @ (Pgpo wPs)
<l didr (13)

Io =A@, — 2R + §ly) L — Tshs(|RBY| — |E 7))
17y B
|R-| 475 R-

wherei (') is the outward normal t@’ (C”) at# (7'). In the case of
coincident triangles the authors could perform the integrals (11)—(13)
analytically. After some cumbersome manipulations (not reported
here for reasons of space) the authors obtained the expressions

The quantities?t, R~, hy, T4 are defined in Fig. 1. . ) )
Functionsly, I5, and I are bound and can be integrated numerir-eported in Table | (two different formulas are given forand fs,

I T ield I, I AL A v th hors foll d thi according to whether the vertices and 5 coincide or not). Note
callyonitoyield 11, Iz, andls. Actually, the authors followed this ¢ e expressions in Table | are simple relations involving only the

analytical-numerical integration scheme only for joint triangles sinqgngth of the edges, the perimeter, and the area of the triangle.

in the case of coincident triangles the authors were able to derivencigentally, the authors note that (11)—(13) can be used to evaluate
the analytical formulas fOI], Ig, andIg that turned out to be even numerica”y_[l’ ]2’ and Is over Cop|anar domains of generic Shape
simpler than the expressions for the potential integrals. Considerisiice in their derivation the triangular shape is immaterial and the
two generic coplanar trianglég andT", vectorsR, Pa, andg’; lie  integrands are regular functions.

+ (E+ — ?ﬂé-‘r . ?ﬂ)hy@ In (6)
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triangles. For example, the finite part of the scalar free-space Green’s
function, i.e.,(e 7% — 1)/4x R, exhibits a tip forR = 0. Thus,

‘ | the rules the authors considered which require the sampling of the
""""""""""""" function exactly at the tip may not be so accurate. In these cases, a
better result could be obtained following the approach proposed in

: [14], or considering different Gaussian rules, e.g., those reported in

. [12].

€

102

1073

: Gung . G .G Finally, in the case of joint triangles taken from the same regular
]0-4 oo = _: 77777777777777 S— — 10,20 M'10,35 ~10,56 . . . _
£ ! ‘ meshes, the authors found that the maximum relative error in evalu
E ‘ ‘ Gao0 Goos ating I, was about 20%, 4%, 1%, 0.5%, and 0.3%, when integrating
10«5> e e ‘ w— I, by the G1, G4, Gio, G20, and G5 rule, respectively. When
1 10 100 mxn 1000 calculatingl, andI; by the same rules errors about twice as large

Fig. 2. Maximum relative erroe in evaluating (1) by the Gaussian rulewere found.

Gm,n versus the numbern x n of the evaluations of the integrand.
Il
The analytical formulas the authors derived and the integration

scheme discussed, together with the numerical data reported, can

In. performing the numericql integrations.the. author.s .used thR used to improve the accuracy and reduce the computing time
routine DOLPAF of the NAG library [13], which is specialized forj, the evaluation of the double surface integrals arising in the

CONCLUSION

B. Numerical Integration

triangular domains and implements thepoint (» = 1, 4, 10, 20,
35, - -+) Gaussian quadrature rule, indicated®y in the following.

application of the BIM to 3-D problems in conjunction with the basis
functions defined in [1]. In the specific application of the BIM to the

In the case of disjoint triangles, the numerical evaluation of (1jetermination of the resonant frequencies of cavity resonators [6],
(2) is performed by the Gaussian ru&, », resulting from the use the authors found that by using the analytical formulas together with

of G., onT andG, onT’. The overall precision depends enand

the rule G4, 4 for the double numerical integrals and the rdlg,

n, whereas the computing time is proportional to the total number gf; integrating the potential integrals on joint triangles, the system

function evaluations, i.e., tov x n.

matrices are evaluated in fairly short computing times to an accuracy

To derive the criterion for the best choice @ and n, the petier than 1%. This, in turn, permits an overall precision of the order

authors compared the values of integrals (1) and (2) obtained usjgy.

different rulesGG.,, » with the values obtained by an accurate adaptive
integration. The relative errors were calculated considering a large
number of pairs of triangles belonging to fairly regular meshes

1% in the resonant frequencies [6] to be obtained.
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density with the basis functions the authors used [5]. The main results
found are:

* the maximum relative erropertaining to the rules,,, . in the g
evaluation of integrals (1) and (2) is practically independent
of the frequency, of the Green'’s function, of the shape of the
surface, and of the mesh size; [
the best compromise between accuracy and computing time is
achieved whenn = n (balanced rules), as evidenced in Fig. 2

for the case of integrals (1). (3]

The first, not obvious, result can be explained considering that
the maximum relative error occurs for the integrals involving the
closest disjoint triangles since in this case the integrand is maximall]
uneven. On the other hand, for close triangles the largest contribution
derives from the diverging terms of the Green'’s functions which ar
independent of either the frequency or the boundary conditions th
satisfy. Moreover, the accuracy in evaluating these last contributions
depends essentially on the ratio between the dimensions of the
triangles and their distance. Therefore, a modification of the mesk]
size, which causes a local scaling of the geometry, keeps this ratio
unchanged and does not affect the maximum relative error. For these
reasons, the data reported in Fig. 2 have a general validity and th¢yj
can be used to choose the rule that assures a given precision with the
minimum number of function evaluations. Other results relative t
: ) - 8]
integrals (2) (not reported here for brevity) show a similar behavio
with the only difference being errors about twice as large. [9]

The use of the rul&,,. . in the integration of the regular part of
the Green'’s functions over coincident or joint triangles gives rise 1c1>
relative errors that in general are much smaller than those repor egl
in Fig. 2. The authors note, however, that some problems may derive
from a possible residual unevenness of the integrand for coincident

5]
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Fig. 1. Configuration of a DR in a MIC environment.

generalized impedance boundary conditions (GIBC's) method [7],
the finite-element methods (FEM'’s) [8], and the frequency-domain
finite-difference method [9]. Among them, the simple EDC method
[2] is not rigorous and the field distributions obtained are not accurate
enough in general, while the rigorous GIBC method [7] is tedious and
the results of it are even incorrect in some cases. Numerical results of
these two methods will be demonstrated in Section Ill. Computations
Abstract—in this paper, the highly accurate results of resonant fre- Of the unloaded quality factap., are usually then performed by the
quencies, field distributions, and quality factors of the Tk;s mode for  perturbational method via the calculated resonant frequency and field
the cylindrical shielded dielectric resonator (DR) in monolithic integrated  gjstributions which are obtained from lossless conditions. Literature

circuits (MIC’s) with the practical tuning element, such as the metallic . . . ]
tuning screw and the dielectric tuning device are presented. By using with this approach includes the EDC method [2] and the one

the newly developed FD-SIC method, numerical results can be calculated dime.nsionffll (1-D) FEM [10_]- On the other hand, quality fact0r§ are
accurately and efficiently. The DR structures with tuning elements can obtained directly by searching the complex resonant frequencies for
be more easily modeled by the present approach than the other meth- the lossy resonators in the MM methods [4]-[6] or by the incremental

ods using approximate solutions or the mode-matching (MM) methods. ; ; ;
Numerical results in the literature are compared to the present FD-SIC frequency rule [6]. However, only the basic structure depicted in

results for the DR without tuning elements and detailed discussions on F19- 1 iS considered in the above-mentioned investigations.
these results are given. In addition, design curves are also presented for ~Rigorous calculations for the DR with the metallic tuning screw
the DR with the metallic tuning screw and with the dielectric tuning or the dielectric tuning device are very limited. To the authors’
device. These design curves are helpful for designing DR systems with knowledge, only two references can be found: the FEM [8] for only
tuning elements in MIC applications. the resonant frequency of the DR with metallic screws and the more
complete investigation in [5] by the MM method. The EDC, GIBC,
. INTRODUCTION and 1-D FEM methods are not suitable for these two structures. To
Dielectric resonators (DR’s) have now become basic componesitain the precise values of the resonant frequency@adactors
for designing filters and oscillators of high quality factors in many mief these practical DR systems, efficient and versatile approaches
crowave systems. The nature of low-loss and ease of miniaturizatidi¢ preferred and needed, especially for € computation with
into microwave integrated circuits (MIC’s) or monolithic microwavethe perturbational method in which the calculated resonant field
integrated circuits (MMIC’s) make them very attractive. The statdlistributions should be as correct as possible. In this paper, the finite-
of-the-art local oscillator design in MIC’s often employs DR’s tddifference and simultaneous iteration with the Chebyshev acceleration
build high-performance DR oscillators. Mechanical tuning elemen{ED-SIC) method [9] is extended to model the DR with tuning devices
commonly accompany the DR to change the resonant frequencymere flexibly. Due to the efficiency of this method, a large number of
compensate for some deviations due to the fabrication tolerance &ede points can be used and adequately distributed over the modeling
for some errors due to the theoretical prediction. The typical tunigoss sections to calculate the required results precisely.
elements are the metallic tuning plate or screw (Fig. 2) and the
dielectric tuning device (Fig. 3). The metallic tuning plate or screw
increases the resonant frequency when moved near to the DR, while
the dielectric tuning device or another DR is used to decrease thedfhe DR placed on the microstrip substrate is shielded by the
resonant frequency for wide-band usage [1]. metallic enclosure, where the side walls are far away from the DR,
Resonant frequencies and field distributions for the DR on ti# indicated in Fig. 1. In actual calculations, the metallic side wall
microstrip substrate or in a cavity have been investigated wieit @ large radius is about eight times the radius of the DR. Only the
many numerical methods, such as the effective dielectric constdio1s mode is considered for its most common usage in microstrip
(EDC) method [2], the mode-matching (MM) methods [3]-[6], the&ystems. These DR systems are first assumed to be lossless to
obtain the resonant frequencies and eigenfield distributions by using
The authors are with the Department of Electrical Engineering, Nationrg'e FD-SIC.method [9]. Then, the quall.ty fagtors are evaluated by
Tsinghua University, Hsinchu, Taiwan 30043 R.O.C. the conventional perturbational method in which the surface current
Publisher Item Identifier S 0018-9480(97)01721-3. densities on the conductor surfaces are related to the magnetic fields
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